Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results
1.

Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities.

blue red iLID PhyB/PIF6 in vitro Extracellular optogenetics Multichromatic
Small, 4 Jan 2023 DOI: 10.1002/smll.202206474 Link to full text
Abstract: Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
2.

Seeing is believing: tools to study the role of Rho GTPases during cytokinesis.

blue Cryptochromes LOV domains Review
Small GTPases, 18 Aug 2021 DOI: 10.1080/21541248.2021.1957384 Link to full text
Abstract: Cytokinesis is required to cleave the daughter cells at the end of mitosis and relies on the spatiotemporal control of RhoA GTPase. Cytokinesis failure can lead to changes in cell fate or aneuploidy, which can be detrimental during development and/or can lead to cancer. However, our knowledge of the pathways that regulate RhoA during cytokinesis is limited, and the role of other Rho family GTPases is not clear. This is largely because the study of Rho GTPases presents unique challenges using traditional cell biological and biochemical methods, and they have pleiotropic functions making genetic studies difficult to interpret. The recent generation of optogenetic tools and biosensors that control and detect active Rho has overcome some of these challenges and is helping to elucidate the role of RhoA in cytokinesis. However, improvements are needed to reveal the role of other Rho GTPases in cytokinesis, and to identify the molecular mechanisms that control Rho activity. This review examines some of the outstanding questions in cytokinesis, and explores tools for the imaging and control of Rho GTPases.
3.

Multistimuli Sensing Adhesion Unit for the Self-Positioning of Minimal Synthetic Cells.

blue iLID in vitro Extracellular optogenetics
Small, 9 Aug 2020 DOI: 10.1002/smll.202002440 Link to full text
Abstract: Cells have the ability to sense different environmental signals and position themselves accordingly in order to support their survival. Introducing analogous capabilities to the bottom-up assembled minimal synthetic cells is an important step for their autonomy. Here, a minimal synthetic cell which combines a multistimuli sensitive adhesion unit with an energy conversion module is reported, such that it can adhere to places that have the right environmental parameters for ATP production. The multistimuli sensitive adhesion unit senses light, pH, oxidative stress, and the presence of metal ions and can regulate the adhesion of synthetic cells to substrates in response to these stimuli following a chemically coded logic. The adhesion unit is composed of the light and redox responsive protein interaction of iLID and Nano and the pH sensitive and metal ion mediated binding of protein His-tags to Ni2+ -NTA complexes. Integration of the adhesion unit with a light to ATP conversion module into one synthetic cell allows it to adhere to places under blue light illumination, non-oxidative conditions, at neutral pH and in the presence of metal ions, which are the right conditions to synthesize ATP. Thus, the multistimuli responsive adhesion unit allows synthetic cells to self-position and execute their functions.
4.

Photoactivatable RNA N6 -Methyladenosine Editing with CRISPR-Cas13.

blue CRY2/CIB1 HEK293T HeLa primary mouse BMSCs Epigenetic modification
Small, 25 Jun 2020 DOI: 10.1002/smll.201907301 Link to full text
Abstract: RNA has important and diverse biological roles, but the molecular methods to manipulate it spatiotemporally are limited. Here, an engineered photoactivatable RNA N6 -methyladenosine (m6 A) editing system with CRISPR-Cas13 is designed to direct specific m6 A editing. Light-inducible heterodimerizing proteins CIBN and CRY2PHR are fused to catalytically inactive PguCas13 (dCas13) and m6 A effectors, respectively. This system, referred to as PAMEC, enables the spatiotemporal control of m6 A editing in response to blue light. Further optimization of this system to create a highly efficient version, known as PAMECR , allows the manipulation of multiple genes robustly and simultaneously. When coupled with an upconversion nanoparticle film, the optogenetic operation window is extended from the visible range to tissue-penetrable near-infrared wavelengths, which offers an appealing avenue to remotely control RNA editing. These results show that PAMEC is a promising optogenetic platform for flexible and efficient targeting of RNA, with broad applicability for epitranscriptome engineering, imaging, and future therapeutic development.
5.

Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles.

blue red Cph1 VVD in vitro Extracellular optogenetics Multichromatic
Small, 21 May 2019 DOI: 10.1002/smll.201901801 Link to full text
Abstract: The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
6.

Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery.

blue YtvA E. coli Transgene expression
Small, 27 Dec 2018 DOI: 10.1002/smll.201804717 Link to full text
Abstract: On-demand and long-term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self-replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin-free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light-regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.
7.

Increasing spatial resolution of photoregulated GTPases through immobilized peripheral membrane proteins.

blue CRY2olig iLID HEK293T HeLa
Small GTPases, 5 Sep 2018 DOI: 10.1080/21541248.2018.1507411 Link to full text
Abstract: Light-induced dimerizing systems, e.g. iLID, are an increasingly utilized optogenetics tool to perturb cellular signaling. The major benefit of this technique is that it allows external spatiotemporal control over protein localization with sub-cellular specificity. However, when it comes to local recruitment of signaling components to the plasmamembrane, this precision in localization is easily lost due to rapid diffusion of the membrane anchor. In this study, we explore different approaches of countering the diffusion of peripheral membrane anchors, to the point where we detect immobilized fractions with iFRAP on a timescale of several minutes. One method involves simultaneous binding of the membrane anchor to a secondary structure, the microtubules. The other strategy utilizes clustering of the anchor into large immobile structures, which can also be interlinked by employing tandem recruitable domains. For both approaches, the anchors are peripheral membrane constructs, which also makes them suitable for in vitro use. Upon combining these slower diffusing anchors with recruitable guanine exchange factors (GEFs), we show that we can elicit much more localized morphological responses from Rac1 and Cdc42 as compared to a regular CAAX-box based membrane anchor in living cells. Thanks to these new slow diffusing anchors, more precisely defined membrane recruitment experiments are now possible.
Submit a new publication to our database